The molecule I have chosen for this month comes on the back of several recent discussions regarding metabolism, energy and in particular the Krebs cycle. All of which involve a molecule that is ubiquitous in living organisms, but doesn't quite have the "glamour" of ATP. Nicotinamide adenine dinucleotide (as seen left, A) comes in two forms: oxidised: NAD+ and reduced: NADH (sometimes written as NADH2 or NADH + H+, and originally written as DPNH): see B, left. I shall use NAD and NADH here for simplicity. The key to the function of this coenzyme lies in its ability to act as a hydrogen donor (eg the reductive amination of 2-oxoglutarate by glutamate dehydrogenase, GDH) or as an acceptor (in the oxidative deamination of glutamate dehydrogenase). In other words, NAD acts as an oxidising agent, as it accepts electrons, or a reducing reagent in the NADH form. However, NAD(H) has some "moonlighting" functions in cells, that I shall come to later. The addition of a parenthetic "P" in my title refers to the phosphorylated form of NAD (see top RHS). This version fulfills the same function as NAD, from a redox perspective, but the presence of the additional 2' phosphate on the adensine moiety will clearly mean that some enzymes utilise NAD and some NADP. However, some can use both! And surprise surprise, GDH from humans is one such enzyme. NAD, NADP or NAD(P)? The presence of the additional phosphate in NADP presents a significant challenge for an NAD-specific enzyme: such a lot of additional negative charge! In the opposite sense, an NADP-specific enzyme might require a strong set of interactions with the phosphate moiety in order for the enzyme to grasp the substrate (or indeed the transition state), during hydride transfer. In general, enzymes are specific for one or the other cofactor, whilst some like GDH in some species, can handle both with similar effieciency. There is a general rule of thumb however, and that is that anabolic dehydrogenases tend to be NADP-specific, whilst catabolic dehydrogenases prefer NAD. As always, rules of thumb in Biology can be your undoing!
Moonlighting functions for NAD. As I said earlier, NAD sometimes acts as a substrate in reactions that are not of the "redox" class. Some proteins are regulated by differential ADP ribosylation: such enzymes, called ADP ribosyltransferases, utilise NAD as the source of this chemical group. In the nucleus of some (if not all?) eukaryotes sequential ADP ribosylation of nucleic acids is common. This so called poly-ADP-ribose polymeration (catalysed by PARPs) is an NAD-dependent reaction, but again not of the redox type. This enzyme is the target for several anticancer drugs, known as PARP inhibitors. You can read about the Sheffield's role in the PARP story here, from Thomas Helleday's lab page.
Final points. I have focused here on NAD as the electron donor-acceptor in dehydrogenase reactions, but there is an alternative coenzyme that is found (often) tightly bound to the enzyme (with Kds in the nanomolar range). This is FAD (and its partner FADH). I shall come back to FAD in a separate post. However it does allow me to finish with a practical point. Earlier I said that many studies have been published on NAD-dependent dehydrogenases and one of the main reasons for this is that whilst NAD in solution is colourless, and only absorbs light at uv wavelengths of less, than 280nm. NADH on the other hand has a very convenient absorbance maximum at 340nm (see figure top RHS). This fact alone makes NAD-dependent dehydrogenases very easy to assay. Therefore, armed with such a sensitive and robust absorbance characteristic, enzymologists have used the dehydrogenases as test beds for understanding many generic properties of enzyme catalysis. I also will leave you with the important point. It is the NADH (and FADH) that is generated via the Krebs Cycle, that indirectly gives rise to ATP during respiration, via the electron transfer chain. Again this will be discussed in more detail separately, but the generation of ATP via the mitochondrial ATP synthase is only possible as electrons cascade down the electron transfer chain from NADH and (FADH). I hope you agree with me that NAD as a suitable candidate as a molecule of the month!















