This month I have taken the liberty of discussing a collection of related proteins, that together make up the virus at the heart of Acquired Immunodeficiency Syndrome (AIDS): the Human Immunodeficiency Virus (HIV). For the purposes of the Blog, I will consider HIV as a multi-protein complex in which an outer shell of proteins, protects an inner core that contains the RNA genome and accessory molecules. A little Biology first, HIV is a retrovirus, that is, its genome is RNA based and therefore it requires a conversion step in which the enzyme Reverse Transcriptase copies the viral genome into DNA, as a prelude to its insertion into the (human) host genome.
The virus genome comprises 3 primary genes: Gag, Pol and Env. These 3 genes each encode a poly protein which is then processed to form the HIV proteome. The Gag proteins (for group specific antigen) are proteins that organise the interior of the virion. The Pol polyprotein encodes enzymes for replication of the genome, including reverse transcriptase, that catalyses DNA synthesis from RNA, and an Integrase enzyme that inserts the DNA into the host genome. The other key protein that is co translated with RT, is the HIV protease, itself required for processing of the polyproteins. Finally, the Env polyprotein comprises the envelope(or surface) proteins, gp120 and gp41 (gp means glycoprotein, a protein that is normally modified by the addition of carbohydrate after synthesis on the ribosome). The genome also encodes essential regulatory elements which are expressed as RNA species: these are called Tat and Rev. A good introduction on the complete set of HIV elements can be found at this link. I shall mainly focus here on some features of the proteins that have been of interest in both vaccine development and drug strategies.
The final structure I wish to mention is the gp120 molecule, which is the target of a number of immunotherapy strategies. Again, mutation rates present a challenge for ani vaccine programme, but AIDS vaccines are particularly difficult to develop owing to the mutability of the viral genome. Professor Dennis Burton's group at Scripps in La Jolla, Callifornia, are in the vanguard of approaches to neutralise HIV. The structure on the right, from the Wilson-Burton groups at Scripps, provides detailed structural interaction information, which is currently reducing the odds of finding a potent vaccine. Indeed in last year's Science the team along with International collaborators made significant advances towards this goal. One of the most important issues that AIDS research has told us is that the recognition between proteins in the design of vaccines, must also consider the significant role played by carbohydrates and the masking of amino acids by sugars, which presents another major challenge to vaccine discovery. However, as the structural information becomes richer, success will surely come.Finally, the challenges to human health brought by retroiviruses such as HIV and Ebola, demonstrates how Science thrives in adversity and I am sure that despite the current Health challenges, we will be in a better position to meet new diseases that are undoubtedly lurking around the corner!
No comments:
Post a Comment