The sections in the New Scientist are as follows:
- Diagnosis
- Fighting Infection
- Drug Hunting
- Cancer
- Regeneration
- Emergency Room
- Brains and Wiring
- Digital Doctor
I shall weave these areas into the 3 parts of the Blog, as follows
Part 1 Introduction, Diet, Diagnosis and Fighting infection
Part 2 Drug Hunting and Cancer
Part 3 Regeneration and Rewiring , with a section on the Digital Doctor and a final discussion
I thought I would begin with a comment on diet/nutrition, which isn't covered
by New Scientist. I will also leave the "Emergency Room" alone, since the Healthcare team at the UTC are much more knowledgeable on such matters, but I couldn't resist the Digital Doctor (well, mainly wearables)!
I also asked the question: "why should we care if people get ill?" And whilst I can understand that there may be an evolutionary driver for individuals to protect their own family members, why should society be driven to cure sick people? Interestingly, students were a little uncomfortable with any suggestion that we should neglect the sick amongst us. I think the conversations provided an interesting platform for starting the Innovation Lab projects.
You can see the kind of advice the Government dishes out (couldn't resist!) in respect of healthy food, at the NHS Choices web site. In relation to this topic, in one of the first Innovation Lab projects at the UTC for Y10s and Y12s, we explored a range of methods and skills in proteomics, by investigating the properties of milk, together with the isolation of natural products from fruit and vegetables in order to test their therapeutic value in treating infectious diseases and as potential sources of new antibiotics. Maybe these were subliminal messages, but I hope that when you leave the UTC, you will all be in a better position to assess the risks of not eating a balanced and healthy diet. Now let's move on to the topic of diagnosis in the future.
"our chemical individualities are due to our chemical merits as well as our chemical shortcomings; and it is more nearly true to say that the factors which confer upon us our predispositions to and immunities from various mishaps which are spoken of as diseases, are inherent in our very chemical structure; and even in the molecular groupings which confer upon us our individualities, and which went into the making of the chromosomes from which we sprang".
This is taken from a famous book entitled "Inborn Factors in Disease", by Sir Archibald Garrod, a household name I assume? (Try Googling "one gene, one enzyme hypothesis" of Beadle and Tatum: it has its roots in Garrod's ideas) What is more surprising is that this was written over 100 years ago and, together with the patient observation methodologies pioneered by William Osler, has remains essentially unchanged today. If you are interested in the history of diagnosis, follow this link to a pdf.The only difference, over one hundred years on, is the technology and a deeper (molecular) understanding of disease mechanisms. A visit to your doctor today to try and get help for "flu-like" symptoms, may trigger a urine, blood and/or oral swab sample.
Detecting infectious agents. The link between wearables in health management and infectious diseases was made clear to me during my sabbatical leave at the Liverpool School of Tropical Medicine. As an institution with a primary focus on translating science into society, with a mission directed at some of the poorest and most challenging locations in the world. The senior team at LSTM: Janet Hemingway and Steve Ward, have been keenly aware of the need to integrate developments in diagnostics and smart phone technologies for some time. Even before attempts to develop sophisticated screening methods (as above), the incorporation of "dumb" phones as a means of communication between clinics and patients to issue reminders for medication etc., has been on the LSTM's radar for some time. Dr. Mark Paine, a biochemist at the centre of one such initiative to develop robust and sensitive diagnostic assays in the fight against malaria is increasingly, factoring in the downstream requirements of the technology "in the field". Some of these portables, wearables and general mobile devices will be used in extreme and remote areas, where battery life is a premium. Such electronic needs are similar to the kinds of factors that ultimately determine whether a promising new "drug" makes it to the pharmacists shelf. You can read about the work in Mark's laboratory here and the LSTM's translational work in their Vision document.
An example of the "pipeline developments" for detection of infectious diseases are exemplified by the Q-POC hand-held instruments from Quantum Diagnostics. Here, the aim is to screen for a range of malaria infection types using a microfluidic device that incorporates DNA extraction and gene specific ID via a high speed (5minues) PCR method. I expect the science behind the selection of probes and DNA extraction is robust, but the challenge with such devices is often the limitations of the power supply and battery life. However, I am sure these issues will be overcome in the near future. I hope this has whetted your appetite for the future and I believe our programmes in the Innovation Labs will prepare students for these exciting challenges.
In Part 2, I shall look at the future of the Pharmaceutical challenges in the hunt for new drugs, including antibiotics and in meeting the challenge of cancer.